Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays.
نویسندگان
چکیده
A central challenge for printed electronics is to achieve high operating frequencies (short transistor switching times) at low supply biases compatible with thin film batteries. In this report, we demonstrate partially printed five-stage ring oscillators with >20 kHz operating frequencies and stage delays <5 μs at supply voltages below 3 V. The fastest ring oscillator achieved 1.2 μs delay time at 2 V supply. The inverter stages in these ring oscillators were based on ambipolar thin film transistors (TFTs) employing semiconducting, single-walled carbon nanotube (CNT) networks and a high capacitance (∼1 μF/cm(2)) ion gel electrolyte as the gate dielectric. All materials except the source and drain electrodes were aerosol jet printed. The TFTs exhibited high electron and hole mobilities (∼20 cm(2)/(V s)) and ON/OFF current ratios (up to 10(5)). Inverter switching times t were systematically characterized as a function of transistor channel length and ionic conductivity of the gel dielectric, demonstrating that both the semiconductor and the ion gel play a role in switching speed. Quantitative scaling analysis suggests that with suitable optimization low voltage, printed ion gel gated CNT inverters could operate at frequencies on the order of 1 MHz.
منابع مشابه
Printed Sub-2 V Gel-Electrolyte-Gated Polymer Transistors and Circuits
The fabrication and characterization of printed ion-gel-gated poly(3hexylthiophene) (P3HT) transistors and integrated circuits is reported, with emphasis on demonstrating both function and performance at supply voltages below 2 V. The key to achieving fast sub-2 V operation is an unusual gel electrolyte based on an ionic liquid and a gelating block copolymer. This gel electrolyte serves as the ...
متن کاملPrinted, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.
Printing electronic components on plastic foils with functional liquid inks is an attractive approach for achieving flexible and low-cost circuitry for applications such as bendable displays and large-area sensors. The challenges for printed electronics, however, include characteristically slow switching frequencies and associated high supply voltages, which together impede widespread applicati...
متن کاملAerosol-jet-printed, 1 volt H-bridge drive circuit on plastic with integrated electrochromic pixel.
In this report, we demonstrate a printed, flexible, and low-voltage circuit that successfully drives a polymer electrochromic (EC) pixel as large as 4 mm(2) that is printed on the same substrate. All of the key components of the drive circuitry, namely, resistors, capacitors, and transistors, were aerosol-jet-printed onto a plastic foil; metallic electrodes and interconnects were the only compo...
متن کاملFully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant.
Printed p-type single walled carbon nanotube (SWCNT) based circuits exhibit high power dissipation owing to their thick printed dielectric layers (>2 μm) and long channels (>100 μm). In order to reduce the static power dissipation of printed SWCNT-base circuits while maintaining the same printing conditions and channel lengths, complementary metal-oxide-semiconductor (CMOS) based circuits are m...
متن کاملScreen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.
Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a majo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2013